

GOODRAM Industrial mSATA SSD S11 MLC silver-gold-diamond

DATASHEET

Version: 1.2 Date: August 2020

mSATA Solid State Drive with SATA interface for Industrial Applications

Wilk Elektronik S.A. Mikołowska 42

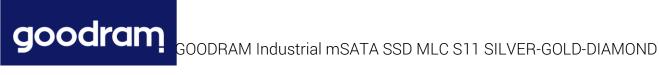
43-173 Łaziska Górne, Poland Tel.: +48 32 736 90 00, Fax.: +48 32 736 90 01

E-mail: sales@goodram.com

All rights are strictly reserved. Any portion of this paper shall not be reproduced, copied or translated to any other forms without permission from Wilk Elektronik S.A.

This document is subject to change without any notice.

Please contact your Wilk Elektronik S.A. sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Wilk Elektronik S.A. assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.


REVISION HISTORY

VERSION	CHANGES	DATE
1.0	Initial release	03.10.2019
1.1	Logo amendment	16.06.2020
1.2	P/N Toshiba/Kioxia amendment	14.08.2020

TABLE OF CONTENTS

PRODUCT OVERVIEW	4
PRODUCT DETAILS	5
GENERAL DESCRIPTION	5
FLASH MANAGEMENT	5
ADDITIONAL FEATURES	7
PERFORMANCE AND POWER CONSUMPTION	8
TBW	9
SUPPLY VOLTAGE	9
PRODUCT ORDERING INFORMATION	10
PIN ASSIGNMENT AND DESCRIPTIONS	11
SUPPORTED ATA COMMAND LIST	12
PHYSICAL DIMENSION	
STANDARDS & REFERENCES	14
SAFETY PRECAUTIONS	14
NOTES ON USAGE	15

PRODUCT OVERVIEW

Capacity

4GB up to 512GB

SATA Interface

- SATA Revision 3.2
- SATA 1.5Gbs, 3Gbps and 6Gbps interface

Flash Memory

- Flash Type: Kioxia 15 nm MLC
- 1pcs to 4pcs of TSOP/BGA flash

Performance Note1

- Read: up to 560 MB/s
- Write: up to 490 MB/s

Power Consumption^{Note2}

- Active mode: < 2690mW
- Idle mode: < 285mW
- DEVSLP mode: < 5mW

• TBW (terabytes written) Note3

- o 540 TBW for 512GB
- RoHS compliant

MTBF

o More than 2,000,000 hours

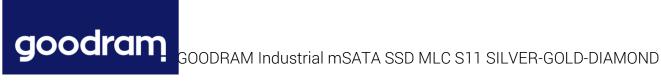
Controller

PS3111-S11

Advanced Flash Management

- o Static and Dynamic Wear Leveling
- Bad Block Management
- TRIM
- o SMART
- o NQC
- o Over-provisioning
- o Firmware update
- \circ SmartZIPTM

Low Power Management


- o DIPM/HIPM Mode
- o DEVSLP Mode (optional)

Temperature Range Note4

- o Operation (silver): 0 ~+ 70°C
- o Operation (gold): -25°C ~ +85°C
- o Operation (diamond): -40°C ~ +85°C
- o Storage: -40°C ~ +85°C

Notes:

- 1. Measured by CrystalDiskMark v3.0
- 2. Please see "Power Consumption" for details.
- 3. Please see "TBW (Terabyte Written)" for details.
- 4. According to standards IEC-60068-2-1/2/14/38

PRODUCT DETAILS

GENERAL DESCRIPTION

GOODRAM Industrial mSATA SSD delivers all the advantages of Flash Drive technology with Serial ATA I/II/III interface and is fully compliant with the standard mSATA form factor. The mSATA SSD is designed to operate at a maximum operating frequency of 200MHz with 30MHz external crystal. The capacity could provide a wide range up to 512GB and the performance reach up to 550MB/s read as well as 500MB/s write based on Toggle 2.0 MLC (with 32MB SDR cache enabled and measured by CrystalDiskMark). Meanwhile, the power consumption is much lower than traditional Hard Drives.

FLASH MANAGEMENT

GOODRAM Industrial mSATA MLC SSD utilizes all the state of art technologies to ensure full reliability until the TBW parameter is reached. These technologies include:

Error Correction Code (ECC)

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, SSD drive applies the LDPC (Low Density parity Check) of ECC algorithm, which can detect and correct errors occur during read process, ensure data been read correctly, as well as protect data from corruption.

Wear Leveling

NAND Flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some area get updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Wear Leveling technique is applied to extend the lifespan of NAND Flash by evenly distributing write and erase cycles across the media. Product has advanced Wear Leveling algorithm, which can efficiently spread out the flash usage through the whole flash media area. Moreover, by implementing both dynamic and static Wear Leveling algorithms, the life expectancy of the NAND Flash is greatly improved.

Bad Block Management

Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during the lifespan of the flash are named "Later Bad Blocks". We implement an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that appear with use. This practice further prevents data being stored into bad blocks and improves the data reliability.

TRIM

TRIM is a feature which helps improve the read/write performance and speed of solid-state drives (SSD). Unlike hard disk drives (HDD), SSDs are not able to overwrite existing data, so the available space gradually becomes smaller with each use. With the TRIM command, the operating system can inform the SSD which blocks of data are no longer in use and can be removed permanently. Thus, the SSD will perform the erase action, which prevents unused data from occupying blocks all the time.

SMART

SMART, an acronym for Self-Monitoring, Analysis and Reporting Technology, is an open standard that allows a hard disk drive to automatically detect its health and report potential failures. When a failure is recorded by SMART, users can choose to replace the drive to prevent unexpected outage or data loss. Moreover, SMART can inform users of impending failures while there is still time to perform proactive actions, such as copy data to another device.

Over-Provision

Over Provisioning refers to the inclusion of extra NAND capacity in a SSD, which is not visible and cannot be used by users. With Over Provisioning, the performance and IOPS (Input/Output Operations per Second) is improved by providing the controller additional space to manage P/E cycles, which enhances the reliability and endurance as well. Moreover, the write amplification of the SSD becomes lower when the controller writes data to the flash.

Firmware Upgrade

Firmware can be considered as a set of instructions on how the device communicates with the host. Firmware will be upgraded when new features are added, compatibility issues are fixed or read/write performance gets improved.

SmartZIP_{TM}

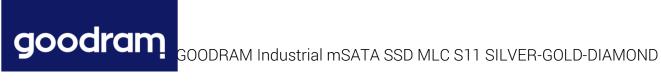
Write data to the NAND Flash costs time. To improve the write speed performance, controller launches with compression technique-SmartZIPTM. Whether a file could be compressed or not depending on the file type, for file types have redundancy data pattern, through our embedded encode engine, we could reduce the amount of data that is actually written to the Flash. Comparing to the SSD without the compression, write efficiency is raised and the SSD endurance is also improved since Flash could be benefit from less data written for a longer SSD lifetime.

ADDITIONAL FEATURES

Low Power Management (DIPM/HIPM Mode)

SATA interfaces contain two low power management states for power saving: Partial and Slumber modes. For Partial mode, the device has to resume to full operation within 10 microseconds, whereas the device will spend 10 milliseconds to become fully operational in the Slumber mode. SATA interfaces allow low power modes to be initiated by Host (HIPM, Host Initiated Power Management) or Device (DIPM, Device Initiated Power Management). As for HIPM, Partial or Slumber mode can be invoked directly by the software. For DIPM, the device will send requests to enter Partial or Slumber mode.

DEVSLP Mode (optional)


With the increasing need of aggressive power/battery life, SATA interfaces include a new feature, Device Sleep (DEVSLP) mode, which helps further reduce the power consumption of the device. DEVSLP enables the device to completely power down the device PHY and other sub-systems, making the device reach a new level of lower power operation. The DEVSLP does not specify the exact power level a device can achieve in the DEVSLP mode, but the power usage can be dropped down to 5mW or less.

Power Loss Protection: Flushing Mechanism

Power Loss Protection is a mechanism to prevent data loss during unexpected power failure. DRAM is a volatile memory and frequently used as temporary cache or buffer between the controller and the NAND flash to improve the SSD performance. However, one major concern of the DRAM is that it is not able to keep data during power failure. Accordingly, the controller applies the GuaranteedFlush Technology, which requests the controller to transfer data to the cache. For the used controller, SDR performs as a cache, and its sizes include up to 32MB. Only when the data is fully committed to the NAND flash will the controller send acknowledgement (ACK) to the host. Such implementation can prevent false-positive performance and the risk of power cycling issues.

Additionally, it is critical for a controller to shorten the time the in-flight data stays in the cache. Thus, the controller applies an algorithm to reduce the amount of data resides in the cache to provide a better performance. This SmartCacheFlush technology allows incoming data to only have a "pit stop" in the cache and then move to the NAND flash at once. If the flash is jammed due to particular file sizes (random 4K), the cache will be treated as an "organizer", consolidating incoming data into groups before written into the flash to improve write amplification.

In sum, with this Flush Management, the controller proves to provide the reliability required by consumer, industrial, and enterprise-level application.

Advanced Device Security Features (Secure Erase, Write Protect)

Secure Erase is a standard ATA command and will write all "0x00" to fully wipe all the data on hard drives and SSDs. When this command is issued, the SSD controller will empty its storage blocks and return to its factory default settings. When a SSD contains too many bad blocks and data are continuously written in, then the SSD might not be used anymore. Thus, Write Protect is a mechanism to prevent data from being written in and protect the accuracy of data that are already stored in the SSD.

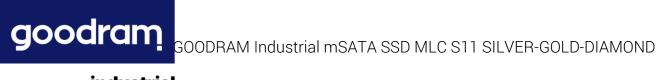
PERFORMANCE AND POWER CONSUMPTION

		Perfori	mance	Power Consumption			
Capacity	Flash Structure	CrystalD	iskMark	Read	Write	Idle (mW)	DEVSLP (mW)
		Read (MB/s)	Write (MB/s)	(mW)	(mW)		
4GB	4GB x 1, TSOP	160	50	700	740	280	4.9
406	4GB x 1, TSOP	300	50	870	800	265	4.9
8GB	8GB x 1, TSOP	165	100	700	740	280	4.9
одь	8GB x 1, TSOP	320	105	850	770	265	4.9
16GB	16GB x 1, TSOP	320	84	1,180	1,200	262	4.9
30/32GB	16GB x 2, TSOP	550	160	1,185	1,300	265	4.9
60/64GB	16GB x 4, TSOP	550	310	1,220	1,310	265	4.9
	64GB x 2, BGA	550	465	1,270	1,600	280	4.9
120/128GB	32GB x 4, BGA	550	465	1,280	1,700	285	4.9
	32GB x 4, TSOP	550	465	1,200	1,600	265	4.9
240/256GB	64GB x 4, BGA	550	490	1,320	2,600	285	4.9
240/23006	64GB x 4, TSOP	550	465	1,250	1,555	260	4.9
480/512GB	128GB x 4, BGA	550	490	1,450	2,690	285	4.9
400/31206	128GB x 4, TSOP	550	465	1,445	2,485	265	4.9

NOTES:

- 1. The performance was measured using CrystalDiskMark with SATA 6Gbps host.
- 2. Samples were built using Kioxia 15 nm MLC NAND flash.
- 3. Performance may differ according to flash configuration and platform.
- 4. The table above is for reference only. The criteria for MP (mass production) and for accepting goods shall be discussed based on different flash configuration.

TBW


Capacity	Flash Structure	TBW	
4GB	4GB x 1	1	
8GB	8GB x 1	3	
16GB	16GB x 1	6	
30/32GB	16GB x 2	13	
60/64GB	16GB x4	30	
120/128GB	64GB x 2	87	
120/12006	32GB x 4	87	
240/256GB	64GB x 4	198	
480/512GB	128GB x 4	540	

NOTES:

- 1. Samples were built using Kioxia 15 nm MLC NAND flash.
- 2. The test followed JEDEC219A client endurance workload.
- 3. TBW may differ according to flash configuration and platform.
- 4. The endurance of SSD could be estimated based on user behaviour, NAND endurance cycles, and write amplification factor. It is not guaranteed by flash vendor.

SUPPLY VOLTAGE

PARAMETER	RATING
Operating voltage	3.3V +/- 5%


PRODUCT ORDERING INFORMATION

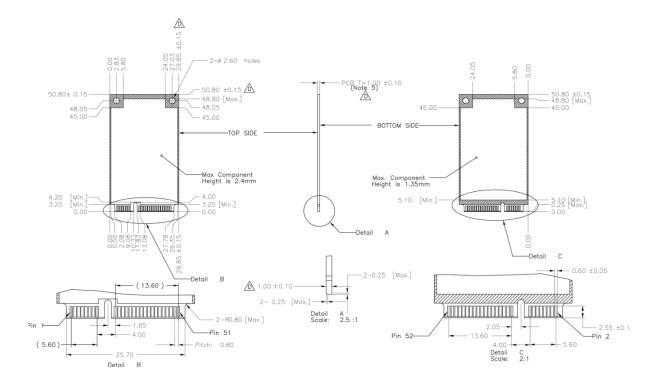
PN	Туре	Capacity	Technology	Temp range	Grade
RUSMSM004S3SB-P11KI5	mSATA	4GB	MLC	0~70°C	silver
RUSMSM008S3SB-P11KI5	mSATA	8GB	MLC	0~70°C	silver
RUSMSM016S3SB-P11KI5	mSATA	16GB	MLC	0~70°C	silver
RUSMSM030S3SB-P11KI5	mSATA	30GB	MLC	0~70°C	silver
RUSMSM032S3SB-P11KI5	mSATA	32GB	MLC	0~70°C	silver
RUSMSM060S3SB-P11KI5	mSATA	60GB	MLC	0~70°C	silver
RUSMSM064S3SB-P11KI5	mSATA	64GB	MLC	0~70°C	silver
RUSMSM120S3SB-P11KI5	mSATA	120GB	MLC	0~70°C	silver
RUSMSM128S3SB-P11KI5	mSATA	128GB	MLC	0~70°C	silver
RUSMSM240S3SB-P11KI5	mSATA	240GB	MLC	0~70°C	silver
RUSMSM256S3SB-P11KI5	mSATA	256GB	MLC	0~70°C	silver
RUSMSM480S3SB-P11KI5	mSATA	480GB	MLC	0~70°C	silver
RUSMSM512S3SB-P11KI5	mSATA	512GB	MLC	0~70°C	silver
RUSMSM004S3GB-P11KI5	mSATA	4GB	MLC	-25~85°C	gold
RUSMSM008S3GB-P11KI5	mSATA	8GB	MLC	-25~85°C	gold
RUSMSM016S3GB-P11KI5	mSATA	16GB	MLC	-25~85°C	gold
RUSMSM030S3GB-P11KI5	mSATA	30GB	MLC	-25~85°C	gold
RUSMSM032S3GB-P11KI5	mSATA	32GB	MLC	-25~85°C	gold
RUSMSM060S3GB-P11KI5	mSATA	60GB	MLC	-25~85°C	gold
RUSMSM064S3GB-P11KI5	mSATA	64GB	MLC	-25~85°C	gold
RUSMSM120S3GB-P11KI5	mSATA	120GB	MLC	-25~85°C	gold
RUSMSM128S3GB-P11KI5	mSATA	128GB	MLC	-25~85°C	gold
RUSMSM240S3GB-P11KI5	mSATA	240GB	MLC	-25~85°C	gold
RUSMSM256S3GB-P11KI5	mSATA	256GB	MLC	-25~85°C	gold
RUSMSM480S3GB-P11KI5	mSATA	480GB	MLC	-25~85°C	gold
RUSMSM512S3GB-P11KI5	mSATA	512GB	MLC	-25~85°C	gold
RUSMSM004S3DB-P11KI5	mSATA	4GB	MLC	-40~85°C	diamond
RUSMSM008S3DB-P11KI5	mSATA	8GB	MLC	-40~85°C	diamond
RUSMSM016S3DB-P11KI5	mSATA	16GB	MLC	-40~85°C	diamond
RUSMSM030S3DB-P11KI5	mSATA	30GB	MLC	-40~85°C	diamond
RUSMSM032S3DB-P11KI5	mSATA	32GB	MLC	-40~85°C	diamond
RUSMSM060S3DB-P11KI5	mSATA	60GB	MLC	-40~85°C	diamond
RUSMSM064S3DB-P11KI5	mSATA	64GB	MLC	-40~85°C	diamond
RUSMSM120S3DB-P11KI5	mSATA	120GB	MLC	-40~85°C	diamond
RUSMSM128S3DB-P11KI5	mSATA	128GB	MLC	-40~85°C	diamond
RUSMSM240S3DB-P11KI5	mSATA	240GB	MLC	-40~85°C	diamond
RUSMSM256S3DB-P11KI5	mSATA	256GB	MLC	-40~85°C	diamond
RUSMSM480S3DB-P11KI5	mSATA	480GB	MLC	-40~85°C	diamond
RUSMSM512S3DB-P11KI5	mSATA	512GB	MLC	-40~85°C	diamond

PIN ASSIGNMENT AND DESCRIPTIONS

Pin #	mSATA Pin	Description	Pin #	mSATA Pin	Description
1	NC	No Connect	27	SATA GND	SATA Ground Return Pin
2	+3.3V	3.3V Source	28	NC	No Connect
3	NC	No Connect	29	SATA GND	SATA Ground Return Pin
4	DGND	Digital GND	30	NC	No Connect
5	NC	No Connect	31	RXN (in)	Host Transmitter Differential Signal Pair
6	NC	No Connect	32	NC	No Connect
7	NC	No Connect	33	RXP (in)	Host Transmitter Differential Signal Pair
8	NC	No Connect	34	DGND	Digital GND
9	DGND	Digital GND	35	SATA GND	SATA Ground Return Pin
10	NC	No Connect	36	NC	No Connect
11	NC	No Connect	37	SATA GND	SATA Ground Return Pin
12	NC	No Connect	38	NC	No Connect
13	NC	No Connect	39	+3.3V	3.3V Source
14	NC	No Connect	40	DGND	Digital GND
15	DGND	Digital GND	41	+3.3V	3.3V Source
16	NC	No Connect	42	NC	No Connect
17	NC	No Connect	43	NC	No Connect
18	DGND	Digital GND	44	DEVSLP	Enter/Exit DevSleep
19	NC	No Connect	45	NC	Reserved pin
20	NC	No Connect	46	NC	No Connect
21	SATA GND	SATA Ground Return Pin	47	NC	Reserved pin
22	NC	No Connect	48	NC	No Connect
23	TXP (out)	Host Receiver Differential Signal Pair	49	DAS	Device Activity Signal
24	+3.3V	3.3V Source	50	DGND	Digital GND
25	TXN (out)	Host Receiver Differential Signal Pair	51	GND	Default connect to GND
26	SATA GND	SATA Ground Return Pin	52	+3.3V	3.3V Source

SUPPORTED ATA COMMAND LIST

Op-	Code	Command Description	0	Op-Code		Command Description	
0(0h	NOP		C9h		Read DMA without Retry	
0	6h	Data Set Management	CAh			Write DMA	
10h	-1Fh	Recalibrate	CBh			Write DMA without Retry	
20	0h	Read Sectors		CEh		Write Multiple FUA EXT	
2:	1h	Read Sectors without Retry		E0h		Standby Immediate	
24	4h	Read Sectors EXT		E1h		Idle Immediate	
2.	5h	Read DMA EXT		E2h		Standby	
2	7h	Read Native Max Address EXT		E3h		Idle	
29	9h	Read Multiple EXT		E4h		Read Buffer	
2	Fh	Read Log EXT		E5h		Check Power Mode	
30	0h	Write Sectors		E6h		Sleep	
3:	1h	Write Sectors without Retry		E7h		Flush Cache	
34	4h	Write Sectors EXT		E8h		Write Buffer	
3.	5h	Write DMA EXT		E9h		READ BUFFER DMA	
	7h	Set Native Max Address EXT		EAh		Flush Cache EXT	
	8h	CFA Write Sectors Without Erase		EBh		Write Buffer DMA	
	9h	Write Multiple EXT		ECh		Identify Device	
	Dh	Write DMA FUA EXT		EFh		Set Features	
3	Fh	Write Long EXT	EFh	0:	2h	Enable volatile write cache	
40	0h	Read Verify Sectors	EFh	0:	3h	Set transfer mode	
4:	1h	Read Verify Sectors without Retry	EFh			Enable the APM feature set	
4:	2h	Read Verify Sectors EXT	EFh 10h		0h	Enable use of SATA features et	
		<u> </u>		4.01	001	Enable DMA Setup FIS Auto-Activate	
4	4h	Zero EXT	EFh	10h	02h	optimization	
4	- L	Weite He come the left TVT		4 O.L.	021-	Enable Device-initiated interface power	
4:	5h	Write Uncorrectable EXT	EFN	10n	03h	state (DIPM) transitions	
4	7h	Read Log DMA EXT	FFh	10h	06h	Enable Software Settings Preservation	
	<i>,</i> , , ,	Nedd Eog DWA EXT		1011	0011	(SSP)	
5	7h	Write Log DMA EXT	FFh	10h	07h	Enable Device Automatic Partial to	
		_				Slumber transitions	
	0h	Read FPDMA Queued		10h		Enable Device Sleep	
	1h	Write FPDMA Queued	EFh		5h	Disable read look-ahead	
	-7Fh	Seek	EFh		6h	Disable reverting to power-on defaults	
	0h	Execute Device Diagnostic	EFh	-	2h	Disable volatile write cache	
	1h	Initialize Device Parameters	EFh	-	5h	Disable the APM feature set	
9:	2h	Download Microcode	EFh	Fh 90h		Disable use of SATA feature set	
9:	3h	Download Microcode DMA	EFh	90h	02h	Disable DMA Setup FIS Auto-Activate	
				-	1	optimization	
В	0h	SMART	EFh	90h	03h	Disable Device-initiated interface	
				-		power state (DIPM) transitions	
B0h	D0h	EFh	EFh	90h	06h	Disable Software Settings Preservation (SSP)	
DOI:	D11-	EE!-	ce.	001	071	Disable Device Automatic Partial to	
B0h	D1h	EFh	EFN	yun	07h	Slumber transitions	
B0h	D2h	EFh	EFh	90h	09h	Disable Device Sleep	


GOODRAM Industrial mSATA SSD MLC S11 SILVER-GOLD-DIAMOND

industrial

B0h	D3h	SMART SAVE ATTRIBUTE VALUES	EFh	AAh	Enable read look-ahead
B0h	D4h	SMART EXECUTE OFF-LINE IMMEDIATE	EFh	CCh	Enable reverting to power-on defaults
B0h	D5h	SMART READ LOG		F1h	Security Set Password
B0h	D6h	SMART WRITE LOG		F2h	Security Unlock
B0h	D8h	SMART ENABLE OPERATIONS		F3h	Security Erase Prepare
B0h	D9h	SMART DISABLE OPERATIONS		F4h	Security Erase Unit
B0h	DAh	SMART RETURN STATUS		F5h	Security Freeze Lock
B0h	DBh	SMART ENABLE/DISABILE AUTOMATIC OFF- LINE	F6h		Security Disable Password
В	1h	Device Configuration	F8h		Read Native Max Address
В	4h	Sanitize		F9h	Set Max Address
С	4h	Read Multiple	F9h	01h	SET MAX SET PASSWORD
С	5h	Write Multiple	F9h	02h	SET MAXLOCK
С	6h	Set Multiple Mode	F9h	03h	SET MAX UNLOCK
С	8h	Read DMA	F9h	04h	SET MAX FREEZE LOCIK

PHYSICAL DIMENSION

Dimension: 50.8mm (L) x 29.85mm (W) x 4.00mm (H)

STANDARDS & REFERENCES

The following table is to list out the standards that have been adopted for designing the product.

STANDARD USED	ACRONYM/SOURCE
RoHS	Restriction of Hazardous Substances Directive; please contact us for further information
Serial ATA Revision 3.2	http://www.sata-io.org
ATA-8 spec	http://www.t13.org
CE	Consumer electronics certification; please contact us for further information.

SAFETY PRECAUTIONS

Do not bend, crush, drop, or place heavy objects on top of the Product. Do not use tweezers, pliers or similar items that could damage the Product. Take particular care when inserting or removing the Product. Stop using the Product when the Product does not work properly. Failure to follow these instructions could result in fire, damage to the Product and/or other property, and/or personal injury including burns and electric shock.

Keep out of reach of small children. Accidental swallowing may cause suffocation or injury. Contact a doctor immediately if you suspect a child has swallowed the Product.

Do not directly touch the interface pins, put them in contact with metal, strike them with hard objects or cause them to short. Do not expose to static electricity.

Do not disassemble or modify the Product. This may cause electric shock, damage to the Product or fire.

NOTES ON USAGE

The Product contains nonvolatile semiconductor memory. Do not use the Product in accordance with a method of usage other than that written in the manual. This may cause the destruction or loss of data.

To protect against accidental data loss, you should back up your data frequently on more than one type of storage media. Wilk Elektronik S.A. assumes no liability for destruction or loss of data recorded on the Card for any reason.

When used over a long period of time or repeatedly, the reading, writing and deleting capabilities of the Product will eventually fail, and the performance speed of the Product may decrease below the original speed specific to the Product's applicable class.

If the Product is to be transferred or destroyed, note that the data it contained may still be recoverable unless it is permanently deleted by third-party deletion software or similar means beforehand.

Product is intended for use in general electronics applications and selected industrial applications and any other specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems where failure may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment or equipment used to control combustions or explosions. Do not use Product for Unintended Use unless specifically permitted in this document.

No parts of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, electric, photocopying, recording or otherwise, without permission of Wilk Elektronik S.A.

Wilk Elektronik S.A does not make any warranty, express or implied, with respect to this document, including as to licensing, Non-infringement, merchantability or fitness for a particular purpose.